Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 70, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443968

RESUMO

BACKGROUND: The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS: 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS: Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS: The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.


Assuntos
Oligonucleotídeos Antissenso , Radioimunoterapia , Feminino , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T CD8-Positivos , c-Mer Tirosina Quinase/genética , Proto-Oncogenes , Resultado do Tratamento
2.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345658

RESUMO

The combination of radiation therapy (RT) and immunotherapy has emerged as a promising treatment option in oncology. Historically, x-ray radiation (XRT) has been the most commonly used form of RT. However, proton beam therapy (PBT) is gaining recognition as a viable alternative, as it has been shown to produce similar outcomes to XRT while minimizing off-target effects. The effects of PBT on the antitumor immune response have only just begun to be described, and to our knowledge no studies to date have examined the effect of PBT as part of a combinatorial immunoradiotherapeutic strategy. Here, using a 2-tumor model of lung cancer in mice, we show that PBT in tandem with an anti-PD1 antibody substantially reduced growth in both irradiated and unirradiated tumors. This was accompanied by robust activation of the immune response, as evidenced by whole-tumor and single-cell RNA sequencing showing upregulation of a multitude of immune-related transcripts. This response was further significantly enhanced by the injection of the tumor to be irradiated with NBTXR3 nanoparticles. Tumors of mice treated with the triple combination exhibited increased infiltration and activation of cytotoxic immune cells. This triple combination eradicated both tumors in 37.5% of the treated mice and showed robust long-term immunity to cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Camundongos , Radioimunoterapia , Prótons , Neoplasias Pulmonares/radioterapia , Imunoterapia
3.
Melanoma Res ; 33(4): 332-337, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325860

RESUMO

There is no currently approved adoptive cellular therapy for solid tumors. Pre-clinical and clinical studies have demonstrated that low-dose radiotherapy (LDRT) can enhance intratumoral T cell infiltration and efficacy. This case report describes a 71-year-old female patient with rectal mucosal melanoma that had developed metastases to liver, lung, mediastinum, axillary nodes, and brain. After systemic therapies had failed, she enrolled in the radiation sub-study of our phase-I clinical trial exploring the safety and efficacy of afamitresgene autoleucel (afami-cel), genetically engineered T cells with a T cell receptor (TCR) targeting the MAGE-A4 tumor antigen in patients with advanced malignancies (NCT03132922). Prior to the infusion of afami-cel, she received concurrent lymphodepleting chemotherapy and LDRT at 5.6 Gy/4 fractions to the liver. Time to partial response was 10 weeks, and duration of overall response was 18.4 weeks. Although the patient progressed at 28 weeks, the disease was well controlled after high-dose radiotherapy to liver metastases and checkpoint inhibitors. As of the last follow-up, she remains alive over two years after LDRT and afami-cel therapy. This report suggests that afami-cel in combination with LDRT safely enhanced clinical benefit. This provides evidence for further exploring the benefit of LDRT in TCR-T cell therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Idoso , Melanoma/patologia , Antígeno HLA-A2 , Imunoterapia Adotiva , Neoplasias Cutâneas/radioterapia , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos
4.
Cancer Immunol Res ; 11(4): 486-500, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700864

RESUMO

Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFß levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Lewis , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/metabolismo , Macrófagos , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Fator de Transcrição STAT6/metabolismo
6.
Front Immunol ; 13: 1033642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353620

RESUMO

The TGF-ß superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-ß, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-ß signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Imunoterapia
7.
Front Immunol ; 13: 1022011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405757

RESUMO

The efficacy of immunoradiotherapy consisting of radiation therapy and immune checkpoint blockade relies on effectively promoting the systemic antitumor immune response's activation while simultaneously reducing local factors favoring immune suppression. We previously demonstrated that NBTXR3, a nanoparticle radioenhancer, significantly improved immune responses in a murine anti-PD1-resistant metastatic lung cancer model. We hypothesize that radioactivated-NBTXR3 addition to anti-PD1 and a second-generation anti-CTLA4 could improve treatment effectiveness. To test this hypothesis, we inoculated mice with 344SQR cells in the right and left legs to establish primary and secondary tumors. The primary tumors were intratumorally injected with NBTXR3 nanoparticles on day 7, followed by three fractions of 12 Gy radiation on days 8, 9, and 10. The secondary tumors received two fractions of 1Gy radiation on days 13 and 14. Multiple rounds of anti-PD1, anti-CTLA4 or nonfucosylated anti-CTLA4 were given to the mice. Immune profiling of the tumors revealed that the combination of NBTXR3 with immunoradiotherapy significantly upregulated the activities of a wide range of antitumor immune pathways and reduced the abundance of regulatory suppressor T cells. This combination effectively eradicated the primary and secondary tumors and increased animal survival to 75%. Remarkably, previously treated with NBTXR3-containing treatment, the survivor mice exhibited a long-lasting antitumor memory immune response. This data provides compelling evidence of the efficacy of NBTXR3 to synergize with the immunoradiotherapy approach when combined with an anti-PD1 and multiple checkpoints such as a second generation anti-CTLA4 and show the potential for clinical uses of antitumor immunomodulatory effects of NBTXR3.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Camundongos , Radioimunoterapia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia
8.
Front Immunol ; 13: 984318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275767

RESUMO

Radiation therapy (XRT) has a well-established role in cancer treatment. Given the encouraging results on immunostimulatory effects, radiation has been increasingly used with immune-check-point inhibitors in metastatic disease, especially when immunotherapy fails due to tumor immune evasion. We hypothesized that using high-dose stereotactic radiation in cycles (pulses) would increase T-cell priming and repertoire with each pulse and build immune memory in an incremental manner. To prove this hypothesis, we studied the combination of anti-CTLA-4 and Pulsed radiation therapy in our 344SQ non-small cell lung adenocarcinoma murine model. Primary and secondary tumors were bilaterally implanted in 129Sv/Ev mice. In the Pulsed XRT group, both primary and secondary tumors received 12Gyx2 radiation one week apart, and blood was collected seven days afterwards for TCR repertoire analysis. As for the delayed-Pulse group, primary tumors received 12Gyx2, and after a window of two weeks, the secondary tumors received 12Gyx2. Blood was collected seven days after the second cycle of radiation. The immunotherapy backbone for both groups was anti-CTLA-4 antibody to help with priming. Treatment with Pulsed XRT + anti-CTLA-4 led to significantly improved survival and resulted in a delayed tumor growth, where we observed enhanced antitumor efficacy at primary tumor sites beyond XRT + anti-CTLA-4 treatment group. More importantly, Pulsed XRT treatment led to increased CD4+ effector memory compared to single-cycle XRT. Pulsed XRT demonstrated superior efficacy to XRT in driving antitumor effects that were largely dependent on CD4+ T cells and partially dependent on CD8+ T cells. These results suggest that combinatorial strategies targeting multiple points of tumor immune evasion may lead to a robust and sustained antitumor response.


Assuntos
Adenocarcinoma , Linfócitos T CD8-Positivos , Camundongos , Animais , Carga Tumoral , Memória Imunológica , Imunoterapia , Receptores de Antígenos de Linfócitos T
9.
J Nanobiotechnology ; 20(1): 417, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123677

RESUMO

BACKGROUND: While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS: We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS: This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION: Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , Radioimunoterapia , Receptores Imunológicos , Resultado do Tratamento , Proteína do Gene 3 de Ativação de Linfócitos
10.
Cancers (Basel) ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008385

RESUMO

Tumors deploy various immune-evasion mechanisms that create a suppressive environment and render effector T-cells exhausted and inactive. Therefore, a rational utilization of checkpoint inhibitors may alleviate exhaustion and may partially restore antitumor functions. However, in high-tumor-burden models, the checkpoint blockade fails to maintain optimal efficacy, and other interventions are necessary to overcome the inhibitory tumor stroma. One such strategy is the use of radiotherapy to reset the tumor microenvironment and maximize systemic antitumor outcomes. In this study, we propose the use of anti-PD1 and anti-TIGIT checkpoint inhibitors in conjunction with our novel RadScopal technique to battle highly metastatic lung adenocarcinoma tumors, bilaterally established in 129Sv/Ev mice, to mimic high-tumor-burden settings. The RadScopal approach is comprised of high-dose radiation directed at primary tumors with low-dose radiation delivered to secondary tumors to improve the outcomes of systemic immunotherapy. Indeed, the triple therapy with RadScopal + anti-TIGIT + anti-PD1 was able to prolong the survival of treated mice and halted the growth of both primary and secondary tumors. Lung metastasis counts were also significantly reduced. In addition, the low-dose radiation component reduced TIGIT receptor (PVR) expression by tumor-associated macrophages and dendritic cells in secondary tumors. Finally, low-dose radiation within triple therapy decreased the percentages of TIGIT+ exhausted T-cells and TIGIT+ regulatory T-cells. Together, our translational approach provides a new treatment alternative for cases refractory to other checkpoints and may bring immunotherapy into a new realm of systemic disease control.

11.
Front Oncol ; 11: 737425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497773

RESUMO

Radiation therapy (RT) is emerging as an interventional modality in the cancer-immunity cycle, augmenting the activation of an adaptive immune response against tumors. RT, particularly in combination with immunotherapy, can enhance immune memory effects and shape the tumor-directed T-cell populations. However, a single cycle of RT delivered to a limited number of polymetastatic lesions is rarely sufficient to achieve systemic control. We hypothesize that several rounds of RT, akin to several rounds of immunotherapeutic drugs, is likely to provide greater clinical benefit to patients with metastatic disease. We propose that the repeated exposure to tumor antigens released by "pulsed-RT" (i.e., treating 2-4 tumor lesions with 3 irradiation cycles given one month apart) may amplify the adaptive immune response by expanding the tumor-specific T-cell receptor repertoire, the production of high-affinity tumor antibodies, and the generation of memory lymphocytes and thereby improve immune control of systemic disease.

12.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205020

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). However, since 36-60% of patients relapse, early response prediction is crucial. We present a novel population quantitative systems pharmacology model, integrating literature knowledge on physiology, immunology, and adoptive cell therapy together with 133 CAR-T cell phenotype, 1943 cytokine, and 48 metabolic tumor measurements. The model well described post-infusion concentrations of four CAR-T cell phenotypes and CD19+ metabolic tumor volume over 3 months after CAR-T cell infusion. Leveraging the model, we identified a low expansion subpopulation with significantly lower CAR-T cell expansion capacities amongst 19 NHL patients. Together with two patient-/therapy-related factors (autologous stem cell transplantation, CD4+/CD8+ T cells), the low expansion subpopulation explained 2/3 of the interindividual variability in the CAR-T cell expansion capacities. Moreover, the low expansion subpopulation had poor prognosis as only 1/4 of the low expansion subpopulation compared to 2/3 of the reference population were still alive after 24 months. We translated the expansion capacities into a clinical composite score (CCS) of 'Maximum naïve CAR-T cell concentrations/Baseline tumor burden' ratio and propose a CCSTN-value > 0.00136 (cells·µL-1·mL-1 as predictor for survival. Once validated in a larger cohort, the model will foster refining survival prediction and solutions to enhance NHL CAR-T cell therapy response.

13.
Semin Radiat Oncol ; 31(3): 217-226, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090648

RESUMO

Metastatic cancer is inherently heterogeneous, and patients with metastatic disease can experience vastly different oncologic outcomes depending on several patient- and disease-specific characteristics. Designing trials for such a diverse population is challenging yet necessary to improve treatment outcomes for metastatic-previously thought to be incurable-disease. Here we review core considerations for designing and conducting clinical trials involving radiation therapy and immunotherapy for patients with metastatic cancer.


Assuntos
Imunoterapia , Neoplasias , Ensaios Clínicos como Assunto , Terapia Combinada , Humanos , Neoplasias/radioterapia , Radioterapia
14.
Front Immunol ; 12: 812210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975924

RESUMO

Despite multiple therapeutic approaches, the presence of liver metastases carries a guarded prognosis, urgently necessitating further clinical and scientific research to develop curative interventions. The liver is an immunoprivileged organ that suppresses the effectiveness of immunotherapies in patients with hepatic metastases. Cancer immunotherapies have been successfully bolstered by low-dose radiotherapy (LDRT), which is capable of reprogramming the tumor microenvironment (TME) from an immunosuppressive to an immunostimulatory one. Likewise, LDRT may be able to revoke the immune privilege enjoyed by the liver, permitting successful immunotherapies there. Here, we first review challenges that face the treatment of liver metastases. We next outline emerging preclinical and clinical evidence supporting enhanced systemic tumor control of LDRT in the context of cancer immunotherapy. Finally, we will discuss the rationale of combining liver-directed LDRT with immunostimulatory strategies to overcome immune resistance and achieve better clinical response. This notion is supported by a recent case study in which a patient who had progressed following T cell therapy experienced a complete response after LDRT to the liver.


Assuntos
Fracionamento da Dose de Radiação , Imunoterapia , Neoplasias Hepáticas/radioterapia , Melanoma/radioterapia , Doses de Radiação , Neoplasias Cutâneas/patologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Terapia Combinada , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia Adotiva , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Melanoma/imunologia , Melanoma/secundário , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Resultado do Tratamento
15.
Transl Oncol ; 14(2): 100983, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33340886

RESUMO

Radiotherapy (RT) has been used to control tumors by physically damaging DNA and inducing apoptosis; it also promotes antitumor immune responses via neoantigens release and augmenting immune-oncology agents to elicit systemic response. Tumor regression after RT can recruit inflammatory cells, such as tumor-associated macrophages and CD11b+ myeloid cell populations, a major subset of which may actually be immunosuppressive. However, these inflammatory cells also express Toll-like receptors (TLRs) that can be stimulated to reverse suppressive characteristics and promote systemic antitumor outcomes. Here, we investigated the effects of adding CMP-001, a CpG-A oligodeoxynucleotide TLR9 agonist delivered in a virus-like particle (VLP), to RT in two murine models (344SQ metastatic lung adenocarcinoma and CT26 colon carcinoma). High-dose RT (12Gy x 3 fractions) significantly increased the percentages of plasmacytoid dendritic cells within the tumor islets 3- and 5-days post-RT; adding CMP-001 after RT also enhanced adaptive immunity by increasing the proportion of CD4+ and CD8+ T cells. RT plus CMP-001-mediated activation of the immune system led to significant inhibition of tumor growth at both primary and abscopal tumor sites, thereby suggesting a new combinatorial treatment strategy for systemic disease.

16.
Int J Radiat Oncol Biol Phys ; 109(2): 352-364, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798606

RESUMO

Metastatic cancer is a heterogeneous entity, some of which could benefit from local consolidative radiation therapy (RT). Although randomized evidence is growing in support of using RT for oligometastatic disease, a highly active area of investigation relates to whether RT could benefit patients with polymetastatic disease. This article highlights the preclinical and clinical rationale for using RT for polymetastatic disease, proposes an exploratory framework for selecting patients best suited for these types of treatments, and briefly reviews potential challenges. The goal of this hypothesis-generating review is to address personalized multimodality systemic treatment for patients with metastatic cancer. The rationale for using high-dose RT is primarily for local control and immune activation in either oligometastatic or polymetastatic disease. However, the primary application of low-dose RT is to activate distinct antitumor immune pathways and modulate the tumor stroma in efforts to better facilitate T cell infiltration. We explore clinical cases involving high- and low-dose RT to demonstrate the potential efficacy of such treatment. We then group patients by extent of disease burden to implement high- and/or low-dose RT. Patients with low-volume disease may receive high-dose RT to all sites as part of an oligometastatic paradigm. Subjects with high-volume disease (for whom standard of care remains palliative RT only) could be treated with a combination of high-dose RT to a few sites for immune activation, while receiving low-dose RT to several remaining lesions to enhance systemic responses from high-dose RT and immunotherapy. We further discuss how emerging but speculative concepts such as immune function may be integrated into this approach and examine therapies currently under investigation that may help address immune deficiencies. The review concludes by addressing challenges in using RT for polymetastatic disease, such as concerns about treatment planning workflows, treatment times, dose constraints for multiple-isocenter treatments, and economic considerations.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Animais , Humanos , Imunoterapia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Medicina de Precisão
17.
Nat Med ; 26(12): 1878-1887, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020644

RESUMO

Autologous chimeric antigen receptor (CAR) T cell therapies targeting CD19 have high efficacy in large B cell lymphomas (LBCLs), but long-term remissions are observed in less than half of patients, and treatment-associated adverse events, such as immune effector cell-associated neurotoxicity syndrome (ICANS), are a clinical challenge. We performed single-cell RNA sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T cell infusion products to identify transcriptomic features associated with efficacy and toxicity in 24 patients with LBCL. Patients who achieved a complete response by positron emission tomography/computed tomography at their 3-month follow-up had three-fold higher frequencies of CD8 T cells expressing memory signatures than patients with partial response or progressive disease. Molecular response measured by cell-free DNA sequencing at day 7 after infusion was significantly associated with clinical response (P = 0.008), and a signature of CD8 T cell exhaustion was associated (q = 2.8 × 10-149) with a poor molecular response. Furthermore, a rare cell population with monocyte-like transcriptional features was associated (P = 0.0002) with high-grade ICANS. Our results suggest that heterogeneity in the cellular and molecular features of CAR T cell infusion products contributes to variation in efficacy and toxicity after axi-cel therapy in LBCL, and that day 7 molecular response might serve as an early predictor of CAR T cell efficacy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Ácidos Nucleicos Livres/sangue , Feminino , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/etiologia , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Transcriptoma/genética
18.
J Immunol Res ; 2019: 9678098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001564

RESUMO

Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.


Assuntos
Imunidade Adaptativa , Reposicionamento de Medicamentos , Imunidade Inata , Neoplasias/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Humanos , Camundongos , Interferência de RNA
19.
Front Immunol ; 9: 1161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892297

RESUMO

Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.


Assuntos
Proteínas de Bactérias/imunologia , Catalase/imunologia , Armadilhas Extracelulares/imunologia , Imunidade Inata , Mastócitos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Linhagem Celular , Armadilhas Extracelulares/metabolismo , Humanos , Mastócitos/enzimologia , Camundongos , Mycobacterium tuberculosis/enzimologia , Triptases/imunologia , Triptases/metabolismo , Tuberculose/enzimologia , Tuberculose/imunologia , Tuberculose/patologia
20.
Proc Natl Acad Sci U S A ; 115(10): E2311-E2319, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463696

RESUMO

Blood cell formation must be appropriately maintained throughout life to provide robust immune function, hemostasis, and oxygen delivery to tissues, and to prevent disorders that result from over- or underproduction of critical lineages. Persistent inflammation deregulates hematopoiesis by damaging hematopoietic stem and progenitor cells (HSPCs), leading to elevated myeloid cell output and eventual bone marrow failure. Nonetheless, antiinflammatory mechanisms that protect the hematopoietic system are understudied. The transcriptional regulator STAT3 has myriad roles in HSPC-derived populations and nonhematopoietic tissues, including a potent antiinflammatory function in differentiated myeloid cells. STAT3 antiinflammatory activity is facilitated by STAT3-mediated transcriptional repression of Ube2n, which encodes the E2 ubiquitin-conjugating enzyme Ubc13 involved in proinflammatory signaling. Here we demonstrate a crucial role for STAT3 antiinflammatory activity in preservation of HSPCs and lineage-balanced hematopoiesis. Conditional Stat3 removal from the hematopoietic system led to depletion of the bone marrow lineage- Sca-1+ c-Kit+ CD150+ CD48- HSPC subset (LSK CD150+ CD48- cells), myeloid-skewed hematopoiesis, and accrual of DNA damage in HSPCs. These responses were accompanied by intrinsic transcriptional alterations in HSPCs, including deregulation of inflammatory, survival and developmental pathways. Concomitant Ube2n/Ubc13 deletion from Stat3-deficient hematopoietic cells enabled lineage-balanced hematopoiesis, mitigated depletion of bone marrow LSK CD150+ CD48- cells, alleviated HSPC DNA damage, and corrected a majority of aberrant transcriptional responses. These results indicate an intrinsic protective role for STAT3 in the hematopoietic system, and suggest that this is mediated by STAT3-dependent restraint of excessive proinflammatory signaling via Ubc13 modulation.


Assuntos
Células Sanguíneas/imunologia , Hematopoese , Fator de Transcrição STAT3/imunologia , Animais , Células Sanguíneas/citologia , Linhagem da Célula , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células Mieloides/imunologia , Fator de Transcrição STAT3/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...